循环冷却水处理应用

循环冷却水处理应用

文章出处:作者:admin
循环冷却用水简介;循环冷却水处理是通过在循环水中加入化学药剂来防止腐蚀、水垢和粘泥等危害的产生,以达到水处理目的的方法。循环水中加入水稳药剂,使水质得到改善,提高换热器等设备的效率和寿命,降低能耗,保证生产顺利地进行。
 
一、循环冷却水系统的特点及产生的危害
 
1、循环冷却水系统特点
冷却水系统是用水来作为工业冷却介质的系统,它分为直流冷却水系统和循环冷却水系统。直流冷却水系统因其消耗水量大、加药处理费用过高,已基本被淘汰。循环冷却水系统中的冷却水流经换热器时,和工艺介质进行热交换,热介质通过冷却水冷却到需要的温度,冷却水温度升高,成为热水。热水基本不排放,经过冷却后仍返回系统重复使用。即冷却水被加热成热水,热水被冷却成冷水,冷水再加热,热水再冷却,循环不止,因而大大节约了用水。这就是循环冷却水系统与直流冷却水系统不同之处。循环冷却水系统又可分为密闭式和敞开式两种,其区别在于敞开式系统中的热水是经过冷却塔(又称凉水塔)或冷却池与空气直接接触被冷却为冷水,再返回系统循环使用的,而密闭式系统中水不与大气接触,密闭循环,水不浓缩,也基本上不消耗。
在敞开式循环冷却水系统中,热水通过冷却塔时,部分水被蒸发,使循环水中盐水被浓缩。水不断循环,含盐量就不断增加。为了维持水中的水量平衡,必须不断向循环系统中补充新鲜水,同时排放掉一部分循环冷却水,以保持循环水的含盐量稳定在某一浓度。因此,在水系统循环运行的时候,补充水和循环水中的含盐量是不同的。循环冷却水与补充水中含盐量的比值,就称为浓缩倍数。浓缩倍数是敞开式循环冷却水系统运行的一项重要参数。循环水中保持一定的浓缩倍数,不仅能节水、节药、提高经济效益,而且对稳定水质有重要作用,也有利于进行化学处理。
敞开式循环冷却水系统的水质有以下特点:
(1)因冷却塔的蒸发冷却作用,使一部分循环冷却水被空气带走,系统中损失了一部分水。这部分水没有带走所溶解的固体,而将它原来溶解的固体留在循环系统中,使循环水中的溶解固体物浓度增加,这就是浓缩现象。浓缩会改变水的腐蚀结垢性质,加重水的结垢或腐蚀倾向。
(2)在冷却塔中,水在与空气的接触过程中还会失去一部分游离二氧化碳。由于二氧化碳的逸出,使水中碳酸氢钙容易转化成碳酸钙沉积在换热设备上,其反应如下:
       Ca(HCO3)2        Ca CO3 +CO2 +H2O
水在与空气接触时,还会溶解空气中的氧气,使水中的溶解氧总处于饱和状态。当碳钢与溶有O2的冷却水接触时,由于金属表面的不均一性和冷却水的导电性,在碳钢表面会形成许多腐蚀微电池,使阳极区的金属不断溶解而被腐蚀,其反应如下:
在阳极区      Fe      Fe2++2e
在阴极区      1/2 O2+H2O+2e     2OH-
在水中      Fe2++2OH-      Fe (OH)2
                     O2
             Fe(OH)2      Fe(OH)3
                     O2
             Fe(OH)2      1/2 Fe2O3·H2O
(3)水在与空气的接触过程中,还会将空气中所带的灰尘、微生物、污染气体(如SO2、H2S、NH3等)或昆虫带入水系统,引起水质污染,造成腐蚀或污垢沉积等问题。其中微生物带来的危害特别严重。
如硫酸盐还原菌分解水中的硫酸盐,产生H2S,引起碳钢腐蚀,其反应如下:
 SO2-4+8H++8e      S2-+4H2O+能量(细菌生存所需)
 Fe2++S2-    FeS 
又如铁细菌腐蚀钢铁,产生锈瘤,并释放能量供细菌生存,其反应如下:
      细菌
 Fe2+    Fe3++能量(细菌生存所需)
所以,冷却水循环使用后,运行浓缩倍数提高,各种离子及杂质随之被浓缩,硬度和碱度也大幅度增加,二者平衡被打破而形成水垢,并且,水垢在沉积过程中,常与淤泥、粘泥、腐蚀产物及其它杂质混合在一起形成污垢,污垢附着在设备上又会产生垢下腐蚀,加速设备的穿孔泄漏,危害性更大。水和大气在冷却塔中对流时,吸收了大气中的灰尘、微生物及其孢子,使系统中微生物和悬浮物数量明显增加,且由于养分的浓缩,日光的照射,适宜的温度,充足的溶解氧等条件使得微生物迅速繁殖和滋生。微生物的危害与一般电化学腐蚀及水垢的危害比起来,微生物危害的严重性更胜一筹,其显著特点是危害速度快,被称之为循环冷却水系统处理中的“急性病”,其危害不可小视。微生物滋生将产生两大直接危害,即微生物腐蚀和沉积腐蚀。微生物腐蚀的一个重要特点是腐蚀速度集中于局部部位,主要是由于微生物繁殖将产生特殊的腐蚀环境,如硫酸盐还原菌产生硫化氢气体,硫细菌、铁细菌和线状菌等产生的酸性环境,造成局部腐蚀,后将导致严重的点蚀直至穿孔,其危害特别严重。另外,空气中的灰尘进入冷却水系统中沉积,菌藻的滋生加速了这种粘附物的沉积,并且,微生物大量地繁殖和进行新陈代谢,致使系统内水侧表面越来越多的沉积生物粘泥、污垢及腐蚀产物,温度越高的地方沉积越厚,而且较多的沉积在流速骤降的滞流区和水流的死角,这些沉积物的导热性能比金属差几百倍,且沉积物覆盖下的金属表面是贫氧区,形成氧浓差电池使金属遭受严重的沉积腐蚀。另一方面,由于金属腐蚀产物进入水中,使水质恶化,加剧了水侧受热面上的结垢趋势,引起化学硬垢的产生及垢下腐蚀,如此恶性循环,将严重影响生产的长周期安全正常运行。
综上所述,循环冷却水系统由于空气污染、水温升高、水流速度变化、浓缩倍数提高、工艺介质泄漏和工况环境等因素的影响,给系统带来的危害突出地表现在金属设备及管道腐蚀,沉积物的析出和附着,微生物滋生和粘泥形成上。并且这些问题相互作用,形成恶性循环,危害甚大,它们的解决直接关系着生产的正常与否。若不采取必要的水处理技术加以解决,任其泛滥,将给生产带来严重后果,给企业造成巨大的经济损失。
2、循环冷却水系统运行障碍产生的危害
(1)腐蚀引起的危害
①腐蚀消耗金属材料,使换热器强度下降,降低换热器使用寿命,增加设备投入费用及因停产检修造成经济损失。
②腐蚀常引起换热器管壁穿孔,形成渗漏,或工艺介质泄漏进入冷却水中,损失物料,污染水体;或冷却水渗入工艺介质中,使产品品质受到影响,甚至成为废品。
③严重的腐蚀造成换热器传热面急剧减少,失去冷却作用,而且可能引发泄漏事故,危害工厂安全生产,影响生产装置的长周期运行。
④腐蚀产物会形成污垢,污垢附着在设备上又会产生垢下腐蚀,形成恶性循环,其危害性更大。
(2)水垢引起的危害
①高热阻的无机盐垢,导热性能极低,降低换热器传热效率和冷却塔效率。1mm的垢厚大约相当于8%的能源损失,垢层越厚,换热效率越低,能源消耗也越大。不但增加循环水的消耗量,造成有限资源的浪费,而且还会影响产品的产量和品质。
②水垢的形成使管道管径缩小,流量降低,增加能耗,泵压上升,系统阻力增加,使工艺介质的冷却达不到设计要求,影响生产。
③结垢严重时,将换热管道完全堵死,使生产无法进行,造成非正常停车,导致生产工期的延误。
④水垢在金属壁上的沉积,容易诱发垢下腐蚀,加速设备的穿孔泄漏,使设备遭受严重破坏。
⑤水垢的形成增加清洗次数和费用,尤其是系统停车清洗,造成生产被迫中断,减少有效生产时间。同时,频繁的清洗必将加速设备的损耗,影响材料性能,降低使用寿命。
(3)微生物引起的危害
循环冷却水系统的环境极利于微生物的生长繁殖,微生物滋生将产生两大直接危害,即微生物腐蚀和沉积腐蚀。循环水系统中大量细菌分泌出的粘液像粘合剂一样,并以微生物群体及其遗骸为主体,与水中灰尘、杂质、化学沉淀物、腐蚀产物等粘结在一起,形成粘糊糊的胶粘状物,即微生物粘泥。微生物粘泥既能促进污垢沉积,又能促进腐蚀,给系统造成的危害是相当突出的。粘泥是微生物引起的严重的危害,常表现在以下几个方面:
①粘泥附着在换热部位的金属表面上,降低冷却水的冷却效果。
②大量的粘泥将堵塞换热器中冷却水的通道,从而使冷却水无法工作;少量的粘泥则减少冷却水通道的截面积,从而降低冷却水的流量和冷却效果,增加泵压。
③粘泥集积在冷却塔填料的表面或填料间,堵塞了冷却水的通过,降低冷却塔的冷却效果。
④粘泥覆盖在换热器的金属表上,阻止缓蚀剂和阻垢剂到达金属表面发挥其缓蚀与阻垢的作用,阻止杀生剂杀灭粘泥中和粘泥下的微生物,降低这些药剂的功效。
⑤粘泥覆盖在金属表面,形成氧浓差腐蚀电池,引起金属设备及管道的腐蚀。
 
二、水处理技术在循环冷却水系统中的作用
 
实践证明,化学处理技术能够很好地解决循环水所带来的危害。它在国外应用已有半个世纪以上;在我国也日益广泛应用,大量推广已有二十多年的历史。其综合处理效果令人满意,处理费用也能为用户接受,是普遍使用的好方法。
在循环冷却水中应用水处理技术,既可改善水质,减少对设备的腐蚀和结垢,延长设备寿命,保证生产长周期均衡平稳地运行,又能节约用水,减少排污,对生态环境大为有利,从而获得良好的经济效益和社会效益。
评价化学处理的经济效益需要从处理费用上和生产上全面评价。化学处理费用经济合理,占循环水成本中的比例并不高,而且带给系统的好处很多,有很好的经济效益。据我们了解,许多厂在这方面都深有体验,特别是有的厂初期投产时循环水未进行化学处理,运行一段时间后才发现“水患成灾”,后来采用化学处理,“对症下药”,使水质得到明显改善。这些厂水处理前后对比的效果往往很生动,取得的经济效益也都很明显。科学技术是第一生产力,循环水化学处理技术在节能降耗,高产稳产,提益等方面发挥着非常重要和关键的作用,具体表现在:
1、保证换热设备的运行。通过化学处理,减缓设备和管道的腐蚀和结垢,提高换热效率,改善工艺条件,延长设备及管道的使用寿命。
2、稳定生产。没有沉积物附着、腐蚀穿孔和粘泥堵塞等危害,冷却水系统中的换热器就可以始终在良好的环境中工作,除计划中的检修外,意外的停产检修事故就会减少,为生产的长周期安全运行提供保证,从而降低生产过程中因设备维修造成的时间耽延。
3、节约水资源。冷却水使用水处理剂后,可以提高循环水的浓缩倍数,这对工业节水有着重要的作用。与直流冷却水相比,即便循环水的浓缩倍数比较低,例如仅为1.5倍,但此时补充水即可节约94.8%。由此可见,提高浓缩倍数,使用水处理技术,改善和净化水质,对节约水资源有着至关重要的作用。
4、减少环境污染。由于浓缩倍数的提高,循环冷却水系统比起直流冷却水系统来,大大减少了冷却污水的排放量,也就减少了对环境的污染。
5、经济效益显著。采用水稳技术后,循环冷却水系统处于良性循环,换热效率和冷却效果良好,同时减少原材料的消耗,降低生产成本,实现生产的满负荷运行,生产能力提高,产品品质改善,产量增加,经济效益突出。
 
三、循环冷却水处理技术主要内容
 
这里所说的水处理技术,是指循环冷却水的化学处理技术,它是一门多学科的综合实用技术。它主要是针对不同的水质、设备、材质和工艺条件等因素,选择合理的缓蚀阻垢配方和优良的药剂来抑制腐蚀、水垢和粘泥等危害的产生,使水质稳定,以达到预期的效果,为生产服务。
为了应用好水处理技术,还应有一定的工艺过程和要求,它包括设备剥离清洗、预膜和日常水处理管理工作等。这些过程都是水处理技术的内容,并且每一个环节都是相互联系的,是一个有机的整体,缺一不可,否则将大大降低水处理综合效果。所以,完整地实施水处理技术,是保证循环冷却水系统科学、经济、运行的关键。
1、化学清洗
  在采用水处理技术,投加水处理剂之前,应对循环水系统的换热设备和管道进行剥离和清洗,特别是已经运行的老系统,在粘泥沉积、菌藻滋生严重的状况下,清洗尤为重要。主要机理为通过渗透、疏松、剥离、溶解、分散、整合、晶格畸变等作用,除去水侧表面的粘附物、水垢等杂物,以达到净化设备金属表面的目的,为水处理的预膜和日常处理创造条件。剥离清洗对合理使用水处理剂,发挥水处理剂正常效用是非常必要的。
2、预膜处理
预膜是在系统剥离清洗之后、正常运行之前水处理的一个必要步骤。预膜处理就是在紧接系统清洗之后,向系统中投加一定浓度的预膜剂,在设定条件下循环运行,使之在设备金属表面形成一层均匀致密的保护膜,达到不易成垢和缓蚀的目的,对系统设备和管道起到良好的保护作用。
3、日常水处理工作
当预膜结束后,水处理剂由高浓度转入低浓度的处理成为日常处理。日常处理工作在水处理工作中具有十分重要的作用。日常水处理工作包括:日常加药和分析监测,投加缓蚀阻垢剂以延缓腐蚀和阻止结垢,投加sha菌灭藻剂控制菌藻滋生及粘泥的粘附。日常加药的目的是维持水中药剂浓度,以保持膜的完整性,并起到缓蚀阻垢作用和控制微生物的生长。
要搞好水处理工作,必须下决心严格科学管理,保证在操作时按照规定的水稳剂配方和控制指标(包括水质、加药等)严格执行。在循环水系统正常运行中,需要进行处理效果的监测(如挂腐蚀试片等工作),以了解水质处理的效果,并根据每天水质分析化验结果,对排污水量、补充水量及加药量进行必要的调整,使之达到要求指标,并控制合理的浓缩倍数。
 
四、水处理系统运行效果及其评定
 
1、药剂使用后的表现效果
(1)换热设备和水程管道不再产生新垢,老垢在一定程度上逐步减少,管道阻力减小,泵压降低,冷却水流量增大,换热器效率上升,工艺条件改善,生产能力提高,产品品质稳定,产量增加。
(2)设备及管道的腐蚀得到有效的控制,不仅延长了设备的使用寿命和运行投入周期,而且降低了设备腐蚀穿孔引发泄漏事故的可能性,为生产的长周期安全平稳运行提供了强有力的保障。
(3)系统不再产生新菌藻,老菌藻逐步脱落。同时,附着在换热器、冷却塔、水槽壁、池底、管道上的微生物粘泥、软垢也逐渐被疏松、剥离和分散,随排污水一起排掉。这有效地剿灭了微生物的滋生繁殖,阻断了粘泥污物对系统的侵害。
(4)凉水塔喷嘴、填料无堵塞现象,冷却水量增大,喷水均匀,水流畅通,冷却效率提高,冷却水进、出塔温差变大,为工艺介质的冷却达到设计要求提供了充足的低温水量。
(5)系统结垢、腐蚀和微生物等危害得到有效控制,生产稳定,循环水系统始终在良好的环境中安全运转。除计划中的检修外,意外的停产检修、清洗次数减少,从而降低生产过程中因设备维修、清洗造成的时间耽延和经济损失,不仅减少了计划外的经济支出,同时也延长了有效生产时间。
(6)浓缩倍数提高,不仅节约了大量的冷却用水,而且大大减少了冷却污水的排放量,减轻了对环境的污染,为企业赢得了良好的经济效益和社会效益。
2、水处理运行效果的评定
循环冷却水经化学处理后,其效果应达到国家《工业循环冷却水处理设计规范》GB50050-2007标准中的要求:
腐蚀率:碳钢≤0.075mm/a   铜、不锈钢≤0.005mm/a  
污垢沉积率:< 15mg/(cm2·月)
异养菌总数:<1×105个/ml(平板计数法)

西安迪奥环保科技有限公司

  • 首页
  • 净水设备
  • 软水设备
  • 供水设备
  • 污水处理设备
  • 废水处理设备
  • 水环境治理
  • 水处理药剂
  • 水处理视频
  • 客户案例
  • 技术资讯
  • 设备答疑
  • 企业介绍